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States on Operator Algebras and Axiomatic System
of Quantum Theory

Jan Hamhalter1

Recent development brings new results on the interplay of states on operator algebras
and axiomatics of quantum mechanics. Neither hidden space in the sense of Kochen
and Specker nor approximate hidden variables exist on von Neumann algebras. Tracial
properties of states are connected with dispersions. The axioms on composite systems
simplify to state extension properties.
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1. INTRODUCTION

This review paper is focused on the relationship of axiomatic foundations of
quantum theory and theory of states on operator algebras. We comment on some
aspects of the recent development in this interdisciplinary area that are interesting
both from mathematical and physical standpoint.

The theory of operator algebras has its origin in creating a firm mathematical
base of quantum mechanics in the pioneering works of von Neumann, Murray,
Jordan, Segal, Stone, and others (von Neumann, 1995). Since then this part of
functional analysis has been developing steadily and has not lost its connections
with quantum theory. Many concepts developed formerly in a mathematical con-
text have found important applications in physics and vice versa. A well-known
example in this regard is the concept of a KMS state that describes equilibrium
in quantum statistical mechanics and is simultaneously crucial for the structure
theory of von Neumann algebras.

Recent investigations have brought many results on state spaces that shed new
light on basic axioms of quantum theory. We are going to address two of them—the
theory of hidden variables and the tensor product structures in quantum mechanics.
The paper is organized as follows. In Section 2 we overview basic concepts of the
theory of operator algebras. In Section 3 we deal with the hidden variable problem
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in the C∗-approach to quantum mechanics. In the concluding section we provide
new results on tensor products of C∗-algebras that allow one to simplify the axiom
on composing quantum systems.

2. OPERATOR ALGEBRAS AND AXIOMATICS
OF QUANTUM THEORY

There are various approaches to the mathematical foundations of quantum
theory (Araki, 1999; Gudder 1979; Mackey, 1963; Varadarajan, 1968). In all of
them the basic role is played by the duality, 〈·, ·〉, between the linear structure, O,
of observables and the convex structure, S, of states. If a ∈ O and � ∈ S, then the
value 〈a, �〉 represents the expectation value of the observable a provided that the
quantum system is prepared in the state �. If a is a quantum proposition (i.e., an
observable with two possible values 0 and 1), then the value 〈a, �〉 amounts to the
probability of detecting value 1 when the system is in the state �. In C∗-algebraic
quantum mechanics the system of observables is given by the self-adjoint part of a
C∗-algebra A. The set of states is given by the set of norm one positive functionals
on A. In particular, quantum propositions are identified with projections in Hilbert
spaces. This idea goes back to Birkhoff and von Neumann (1936) and Mackey
(1963).

Before formulating basic postulates of quantum mechanics, we recall a few
standard notions of operator theory and fix the notation. For more details on
operator algebras we refer the reader to standard monographs (Dixmier, 1977;
Kadison and Ringrose, 1986; Pedersen, 1979; Takesaki, 1979). In the sequel,
B(H ) will denote the set of all bounded operators acting on a Hilbert space
H . Let us view B(H ) as a ∗-algebra, i.e., as a linear space with multiplication
given by compositions of operators, and an involutive ∗-operation assigning to
each operator its adjoint. B(H ) endowed with the usual operator norm becomes
a complete normed ∗-algebra. In its concrete form, a C∗-algebra is defined as a
norm closed ∗-subalgebra of B(H ). C∗-algebras can be characterized as normed
∗-algebras having certain properties. Indeed, in its abstract form, C∗-algebra A is
a complete normed ∗-algebra such that the following conditions are fulfilled for
all a, b ∈ A: (i) ‖ab‖ ≤ ‖a‖ · ‖b‖; (ii) ‖a∗ a‖2 = ‖a‖2. We shall denote by Asa

the (real) subspace of A consisting of all self-adjoint elements in A. The bridge
between Hilbert spaces and C∗-algebras is provided by states. A positive functional
on a C∗-algebra A is a linear functional � on A such that �(a∗ a) ≥ 0 for all a ∈ A.
A state on a C∗-algebra A is a norm one positive functional on A. By the symbol
S(A) we shall denote the convex set of all states on A. Pure states are defined as
extreme points of the set S(A). Given a state � on a C∗-algebra A one can endow A

with pseudoinner product (a, b)� = �(a∗ b) (a, b ∈ A). Then A can be represented
on the Hilbert space H� obtained from (A, (·, ·)�) by factoring out zero vectors and
completing. In particular, there is a Hilbert space H�, a unit vector ξ� ∈ H�, and a
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∗-homomorphism π� of A into B(H�) such that �(a) = (π�(a) ξ�, ξ�) for all a ∈ A

and such that the set {π�(a) ξ� | a ∈ A} is dense in H�. The representation π� is
called the Gelfand–Naimark–Segal representation (in short G.N.S. representation)
of � and it is uniquely determined up to a unitary map. We say that a state � is
faithful if (·, ·)� is an inner product, i.e., if �(a∗ a) > 0 for all nonzero a ∈ A.

The C∗-algebras are simultaneous generalizations of finite-dimensional and
noncommutative matrix algebras and commutative and infinite-dimensional alge-
bras of continuous functions on compact spaces. All states on the algebra Mn(C)
of all complex n by n matrices are convex combinations of vector states. A state on
a C∗-algebra A is called a vector state if it is of the form ωξ (a) = (a ξ, ξ ) (a ∈ A),
where ξ is a unit vector in the underlying Hilbert space. States on algebra C(X) of
all continuous functions on a compact Hausdorff space X are in one-to-one corre-
spondence with Radon probability measures on X. A state � on a C∗-algebra A is
called tracial (or a trace) if �(a∗ a) = �(a a∗) for all a ∈ A. A state � on the matrix
algebra Mn(C) is a trace if and only if �(a) = 1

n

∑n
i=1(a ei, ei), (a ∈ Mn(C)),

where (ei) is (any) orthonormal basis of C
n.

C∗-algebras represented on Hilbert spaces are closed with respect to the
uniform convergence on the unit ball of the underlying Hilbert space. In general,
they need not be closed with respect to the strong operator topology. We say that
a net (aα) of bounded operators on a Hilbert space H converges in the strong
operator topology to an operator a ∈ B(H ) if aα ξ converges to a ξ in the norm
topology on H for all ξ ∈ H . A C∗-algebra is called a von Neumann algebra if
it is closed with respect to the strong operator topology. Von Neumann algebras
are characterized as C∗-algebras which are dual Banach spaces. A projection in
a C∗-algebra is an element p such that p2 = p∗ = p. It is well known that von
Neumann algebras have rich projection structures. We shall denote by P (M) the
set of all projections in a von Neumann algebra M . Endowed with the order
p ≤ q if and only if pq = p, and with an orthocomplementation, p⊥ = 1 − p,

the structure P (M) becomes a prominent example of a complete orthomodular
lattice. An important class of states on von Neumann algebras is that of normal
states. A state � on a von Neumann algebra M is called normal if it preserves
bounded monotone nets of self-adjoint operators in M , or equivalently, if the
restriction of � to the projection lattice P (M) is a completely additive measure.
Any normal state is a σ -convex combination of vector states and corresponds to a
density matrix. In this form it is more familiar to physicists.

Now we pass to basic concepts of the structure theory of von Neumann
algebras. The center, Z(M), of a von Neumann algebra M is defined by
Z(M) = {x ∈ M | xy = yx for all y ∈ M}. It is always an abelian von Neumann
subalgebra of M . M is called a factor if the center of M consists only of
multiples of the identity. Factors are considered to be building blocks of gen-
eral von Neumann algebras. The algebra B(H ) is a factor. The direct sum
M1 ⊕ M2 of von Neumann algebras M1 and M2 is defined as the direct sum
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of linear spaces M1 and M2 with coordinatewise defined arithmetic operations
and the norm ‖a ⊕ b‖ = max{‖a‖, ‖b‖} (a ∈ M1, b ∈ M2). The direct sum of
von Neumann algebra s is again a von Neumann algebra. (It can be verified that any
central element z ∈ Z(M) induces the direct sum decomposition z M ⊕ (1 − z) M

of M and vice versa.) We say that a von Neumann algebra A is the direct summand
of a von Neumann algebra M if there is a von Neumann algebra B such that M

can be written as M = A ⊕ B. It can be proved that there is a largest abelian direct
summand, Mab, of M . The simplest noncommutative von Neumann algebra is the
algebra M2(C) of all 2 by 2 matrices. This algebra constitutes an example of a
type I2 factor. In general case, we say that a von Neumann algebra is of type I2 if
it is ∗-isomorphic to the algebra M2(A) of all 2 by 2 matrices over an abelian von
Neumann algebra A. Any von Neumann algebra can be written as a direct sum
M1 ⊕ M2, where M1 is either zero or of type I2, and M2 is either zero or does not
contain any type I2 direct summand.

A C∗-algebra A is called a real rank zero algebra if any element in Asa can
be approximated by a linear combination of projections. Besides von Neumann
algebras, the class of real rank zero algebras comprises many C∗-algebras relevant
to physics such as CCR algebras, rotation algebras, and Cuntz algebras. A C∗-
algebra A is called simple if every closed two-sided ideal in A is either zero
or A.

Now we turn to the tensor products of C∗-algebras. Let L and K be linear
spaces. By L ⊗alg K we shall denote their algebraic tensor product. It is linearly
generated by simple tensors, l ⊗ k, where l ∈ L and k ∈ K . The tensor product,
H ⊗ K , of Hilbert spaces H and K is the completion of the inner product space
H ⊗alg K with inner product given by the following natural rule on simple tensors:
(h1 ⊗ k1, h2 ⊗ k2) = (h1, h2) · (k1, k2), (h1, h2 ∈ H ; k1, k2 ∈ K). Given now two
operators x ∈ B(H ) and y ∈ B(K), there is a unique bounded operator, x ⊗ y, on
H ⊗ K such that (x ⊗ y)(h ⊗ k) = x h ⊗ y k for all h ∈ H and k ∈ K . Let A and
B be C∗-algebras acting on H and K , respectively. The spatial tensor product,
A ⊗ B, of algebras A and B is a C∗-algebra which acts on H ⊗ K and is generated
by the set {x ⊗ y | x ∈ A, y ∈ B}. It should be remarked that the spatial tensor
product (as an abstract C∗-algebra) does not depend on the faithful representations
of A and B on concrete Hilbert spaces H and K , respectively.

The algebraic tensor product A ⊗alg B can carry more than one C∗-norm. It
can be shown that A ⊗alg B becomes a ∗-algebra with multiplication and involution
given by the following rules: (a1 ⊗ b1) · (a2 ⊗ b2) = a1 a2 ⊗ b1 b2, (a1 ⊗ b1)∗ =
a∗

1 ⊗ b∗
1, (a1, a2 ∈ A, b1, b2 ∈ B). Any C∗-norm β on A ⊗alg B is defined as a

norm on A ⊗alg B such that the completion of A ⊗alg B with respect to β is a
C∗-algebra. The corresponding completion is denoted by A ⊗β B and it is called
the (abstract) tensor product of A and B. It is a remarkable fact, due to Takesaki,
that there is a C∗-norm, ‖ · ‖min, on A ⊗alg B such that ‖ · ‖min ≤ β for any
C∗-norm β on A ⊗alg B. The norm ‖ · ‖min is called the minimal norm. A deep
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result on tensor norms says that the minimal norm coincides with the C∗-norm of
the spatial tensor product. As a consequence, the identity map on A ⊗alg B extends
to a continuous homomorphism of A ⊗β B onto A ⊗min B. In other words, the
minimal (i.e., spatial) tensor product is a quotient of any tensor product.

Besides tensoring algebras, one can also tensor their state spaces. It can be
proved that for any pair of states � and ϕ on C∗-algebras A and B, respectively,
there is unique state, � ⊗ ϕ on A ⊗β B such that (� ⊗ ϕ)(a ⊗ b) = �(a) ϕ(b) for
all a ∈ A, b ∈ B. The state � ⊗ ϕ is called the tensor product of states � and ϕ.

After having reviewed the basic concepts of the theory of C∗-algebras needed
in the sequel, we now summarize the basic axioms of C∗-algebraic quantum
mechanics:

• The set of all observables of a quantum system S is the self-adjoint part of
a C∗-algebra A.

• The set of all states of a quantum system S is the state space, S(A), of the
C∗-algebra A.

• The value �(a), where � ∈ S(A) and a ∈ Asa is the expectation value of
an observable a on the condition that a system S is prepared in the state �.

• Evolution of a system S is given by a specified class of morphisms of the
C∗-algebra A (unitary maps, automorphisms, completely positive maps).

• Given independent quantum systems S1 and S2 represented by C∗-algebras
A and B, respectively, the smallest composite system containing S1 and S2

is given by the minimal tensor product A ⊗min B.

3. HIDDEN VARIABLES

In this section, results on hidden variables in C∗-quantum mechanics are
surveyed. We show the link between approximate hidden variables and tracial
properties of states and prove a new generalization of the classical Kochen–Specker
Theorem.

A discussion of the problem of hidden variables is a part of the fundamental
question on completeness of quantum mechanics. In general terms, the problem
of the existence of hidden variable theory is the question of whether or not the
probability interpretation of quantum mechanics can be eliminated by constructing
a probability space such that the probability of any quantum event can be described
by a classical random variable. Results obtained so far indicate that it is not
possible to do it for all observables simultaneously. We are going to show some
new evidence in this respect.

Let L be an orthomodular lattice. By a dispersion-free state on L we mean a
finitely additive probability measure on L with values in the set {0, 1}. Any prob-
ability measure on a probability space can be written as an “integral” mixture of
dispersion-free states, e.g. as a statistical mixture of Dirac measures concentrated
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at points of the underlying “phase space.” We shall show that this does not hold
in the operator algebraic approach to quantum theory, the main reason being the
nonexistence of a dispersion-free state at all. The first result in this direction is a
well known von Neumann impossibility proof (Caruana, 1995) stating that there
is no normal state on B(H ), where dim H = ∞, such that its restriction to the
projection lattice of B(H ) is dispersion-free. This no-go result was extended by
Plymen, 1968, who proved that there is no dispersion-free normal state on a von
Neumann algebra M without a one-dimensional direct summand. Similar conclu-
sions for complete orthomodular lattices have been obtained by Jauch and Piron,
1963, 1969. The following theorem is the strongest no-go result for dispersion-free
states in the context of von Neumann algebras.

Theorem 3.1. (Hamhalter, 1993) The projection lattice P (M) of a von Neumann
algebra M which has neither a nonzero Abelian nor a type I2 direct summand
admits no dispersion free state.

This result can be proved by using Gleason’s Theorem for positive measures
on von Neumann algebras (Aaarnes, 1969; Aaarnes, 1970; Christensen, 1982;
Gleason, 1957; Hamhalter, 2003; Maeda, 1990; Yeadon, 1983, 1984) and then
reduced to the problem of the existence of a linear multiplicative state on a
von Neumann algebra. However, since the proof of Gleason’s Theorem is very
difficult, it is desirable to use more elementary arguments. On employing the
following proposition we see that the problem of the existence of a dispersion-free
state comes down to simple matrix algebras.

Proposition 3.2. Let M be a von Neumann algebra with no nonzero abelian
direct summand and no type I2 direct summand. The following statements hold:

(i) Any subalgebra of M which is ∗-isomorphic to M2(C) is contained in a
subalgebra C ⊕ D of M satisfying the following properties: C is either
zero or it is ∗-isomorphic to M4(C); D is either zero or it is is a copy of
M2(C) contained in another subalgebra of M which is ∗-isomorphic to
M3(C).

(ii) M contains a unital subalgebra ∗-isomorphic to one of the following
matrix algebras: M2(C), M3(C), M2(C) ⊕ M3(C).

Statement (i) above has been proved in the course of the proof of Gleason’s
Theorem (Christensen, 1982; Yeadon, 1983,1984) and it is summarized in
(Hamhalter, 2003, Proposition 5.3.6, p. 132). Statement (ii) has been proved in
(Theorem 7.3.1, Hamhalter, 2003).

The previous proposition implies that it is enough to prove the nonexistence
of dispersion-free states on algebras M3(C) and M4(C). In these cases more



States on Operator Algebras and Axiomatic System of Quantum Theory 1949

elementary arguments based on spherical geometry can be used instead of applying
Gleason’s Theorem in its full power. Various simplifications in this regard have
been obtained by Piron (1968), Bell (1966 ), Navara (2004), and Hamhalter (2003,
Theorem 3.4.1).

One of the consequences of Theorem 3.1 is that the projection lattices of
nearly all von Neumann algebras cannot be embedded into Boolean algebras in
such a way that the embeddings respect suprema of finite collections of orthogonal
projections. This fact is connected with the non-existence of the hidden space in the
sense of Kochen and Specker, 1967. A Hidden space of a given quantum system is
a set, 	, with a σ -field, A, of subsets of 	 with the following properties: For each
quantum observable A and for each quantum state � there are an A-measurable
function fA : 	 → R and a probability measure µ� on A, respectively, such that
the following conditions are fulfilled:

(i) For each Borel set B ⊂ R the probability that the value of an observable
A is in B equals µ�(f −1

A (B)), provided that the system is in the state �.
(ii) (Function Principle) If A and B are observables such that B = g(A),

where g is a real Borel function, then fB = g ◦ fA.

The first condition says that any observable is statistically equivalent to
a certain random variable on 	. Condition (ii) means that the representation
by random variables preserves transformation rules for observables. For a more
detailed discussion on this topic see (Döring, 2004). The famous Kochen–Specker
Theorem (Kocher and Specker, 1967) tells us that the quantum model given by
the algebra B(H ), where H is a separable Hilbert space of dimension at least
3, has no hidden space 	. Recently, it has been proved by Döring, 2004, that a
hidden space does not exist for any von Neumann algebra without a type I2 and
a nonzero Abelian direct summand that acts on a separable Hilbert space. By a
different method we generalize this result to all von Neumann algebras without
abelian and a type I2 direct summand. Moreover, it turns out that only the validity
of the Function Principle suffices for excluding a hidden space. No reference to
the set of states is needed.

Theorem 3.3. Let M be a von Neumann algebra without a type I2 direct sum-
mand and with no nonzero abelian direct summand. There is no σ -field (	,A) and
a map a → fa assigning to each self-adjoint element a in M an A-measurable
real function fa on 	 such that fg(a) = g ◦ fa for any real continuous function g

on R.

Proof: The idea of the proof is to show that the existence of such a σ -field
(	,A) implies the existence of a dispersion-free probability measure on P (M).
Suppose that (	,A) has the properties stated in the theorem. Fix ω ∈ 	 and
consider the map s : Msa → R, s(a) = fa(ω). If p ∈ P (M), then p2 = p and
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so fp(ω)2 = fp(ω). In other words, s(p) ∈ {0, 1}. Let us now take orthogonal
nonzero projections p, q ∈ M . Put x = p + 1

2q. Let f and g be continuous real
functions on R such that f (1) = g( 1

2 ) = 1 and f ( 1
2 ) = g(1) = 0. It is clear that

f (x) = p and g(x) = q. Using the Function Principle we obtain

s(p + q) = s(f (x) + g(x)) = s((f + g)(x)) = (f + g)(fx(ω))

= s(f (x)) + s(g(x)) = s(p) + s(q) .

Therefore, s is a finitely additive dispersion-free measure on P (M). On employing
the Function Principle to a unit element, 1, of M and constant unit function on R,
we see that f1(ω) = 1 for all ω ∈ 	. Hence, s induces a dispersion-free state on
P (M), which is in contradiction with Theorem 3.1. �

The problem of the existence of dispersion-free states and related questions
on hidden variables for von Neumann algebra are more or less solved. The situation
for C∗-algebras is not so clear. The reason is the lack of Gleason type theorems. If
� is a state on a C∗-algebra A and the linear span of projections in A is dense in A,
then � induces a dispersion-free state on the projection structure of A if and only
if � is a ∗-homomorphism of A into the complex field. Therefore, A has a linear
dispersion-free state if and only if it contains a closed ideal of codimension 1. For
C∗-algebras with small or empty projection structures, probability measures on
projections are replaced by quasi-states. A function � : A → C on a C∗-algebra
A is called positive quasi-functional if (i) � is a positive linear functional on all
abelian C∗-subalgebras of A, (ii) �(a + i b) = �(a) + i �(b) for all self-adjoint
a, b ∈ A. The norm of � is defined as ‖�‖ = sup{|�(a)| | ‖a‖ ≤ 1}. If ‖�‖ = 1
we call � a quasi-state. The quasi-functional � is called monotone if �(a) ≤ �(b)
whenever a ≤ b. It is not known whether a quasi-state on a C∗-algebra not having
a quotient ∗-isomorphic to M2(C) is linear. However, quasi-functionals seem to
be more natural for the axiomatics of quantum theory because they postulate
additivity only with respect to commuting elements. Let us denote by Q(A) the set
of all positive quasi-functionals of norm less then one. Denote further by M(A) the
set of all monotone multiplicative functionals in Q(A). (A quasi-functional � is
called multiplicative if �(a b) = �(a) �(b) for all a, b ∈ A). The following result of
Misra states that non-Abelian C∗-algebras do not have large sets of multiplicative
monotone quasi-functionals.

Theorem 3.4. (Misra, 1967). A C∗-algebra A is Abelian if and only if the
closure of the convex hull of M(A) in the topology of pointwise convergence on
elements of A is Q(A).

However, it is not clear in what cases the set M(A) is empty. We succeeded
in proving the following C∗-version of von the Neumann impossibility proof.
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Theorem 3.5. (Hamhalter, 2004) Let A be a simple infinite unital C∗-algebra.
Then A does not admit any dispersion-free quasi-state.

The existence of hidden variables has to be verified by an experiment. Since
every real measurement admits an error, it seems to be more realistic to formulate
the question on the existence of hidden variables as the problem of the existence
of a state with arbitrarily small dispersion. The problem of approximate hidden
variables was posed by G.W. Mackey (see Jauch, 1968). In this connection a quan-
titative measure of dispersion, called the overall dispersion, has been introduced.
Let � be a state on a projection structure P (A) of a C∗-algebra A. The overall
dispersion, σ (�), of � is defined by

σ (�) = sup{�(p) − [�(p)]2 | p ∈ P (A)} .

Any overall dispersion is a number between 0 and 1/4. The dispersion σ (�) =
0 if and only if � is dispersion-free. Study of possible values of dispersions brings
interesting observations even for matrix algebras. It was proved in (Hamhalter,
2004) that any state on a matrix algebra of even rank has dispersion 1/4, while on
algebras of odd ranks the trace is the only state with a smallest dispersion. This
simple but useful fact demonstrates the difference between classical and quantum
theory. The random variable on a discrete finite probability space has a smallest
dispersion if and only if it is a Dirac measure. On the other hand, a discrete
quantum observable with an odd number of values has minimal dispersion if and
only if it is a trace, i.e., a uniform mixture of pure states. As a consequence, we see
that the dispersion of states on matrix algebras is uniformly bounded from below.
This fact can be generalized to all C∗-algebras with reasonably many projections.

Theorem 3.6. (Hamhalter, 2004) Let A be a unital real rank zero algebra having
no representation onto an abelian C∗-algebra. Then

σ (�) ≥ 2

9
,

for any state � on A.

This theorem excludes the existence of states with arbitrarily small disper-
sions on the projection lattices of von Neumann algebras not having a type I2 and
a nonzero abelian direct summand. (The exclusion of the type I2 and the abelian
part is necessary by Hamhalter, 1993.) Normalized traces on matrix algebras of
odd ranks can be characterized as the states with the smallest dispersions. In the
following theorem we generalize this fact to all von Neumann algebras.

Theorem 3.7. (Hamhalter, 2004) Let M be a von Neumann algebra with no
nonzero Abelian direct summand and no Type I2 direct summand. A state ϕ on
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M is tracial if and only if the following condition holds: For any von Neumann
subalgebra A of M which is ∗-isomorphic to M3(C) and such that the restriction,
�A, of � to A is nonzero, the state �A/‖�A‖ has a smallest dispersion among all
states on A.

Traces play a central role in the classification of von Neumann algebras and
are characterized from many points of view. The previous characterization of
traces in terms of dispersions is a new one. Let us remark that this characterization
can also be extended to weights on von Neumann algebras (Hamhalter, 2004).

4. PRODUCT STATES AND TENSOR STRUCTURE

In the concluding part of this paper we investigate the relationship between
independence of operator algebras, product properties of states, and tensor struc-
tures. All the result presented here have been obtained jointly by L. J. Bunce and
the author in Bunce and Hamhalter (2004). We characterize tensor products of
C∗-algebras in quite simple terms of state extensions and, in particular, without
assuming their mutual commutation. This clarifies the position of the spatial tensor
product in the axiomatics of quantum theory.

In the sequel let A and B be C∗-subalgebras of a unital C∗-algebra D such that
1 ∈ A,B. If D = A ⊗β B, then A and B will be identified with A ⊗ 1 and 1 ⊗ B,
respectively. This tensor product organization represents a special configuration
of the given algebras. For instance, the tensor norm is always a cross norm,
i.e., ‖a ⊗ b‖ = ‖a‖ · ‖b‖ (a ∈ A, b ∈ B). Further, each pair of states on algebras
A and B has unique common extension to a product state on D. The tensor
product is a model of independent quantum mechanical systems. It is adopted for
the reason of mathematical convenience and cannot be used so directly in more
general quantum theories such as quantum field theory (Hamhalter, 1997, 2002,
2003; Summers, 1990). For this reason many other independence conditions have
been studied. Haag and Kastler (1964) proposed the following major concept of
independence. C∗-algebras A and B are called C∗-independent if for each state �

on A and for each state τ on B there is a unique state ϕ on D extending both �

and τ . The C∗-independence has a direct physical meaning: Each system can be
prepared in an arbitrary state without disturbing the other. The C∗-independence
does not imply mutual commutation of the algebras. Therefore, the following
interesting question, known as the commutation problem, arises: Under what
additional conditions does the C∗-independence of A and B imply that (i) A and
B commute? (ii) D is ∗-isomorphic to some tensor product of A and B? (iii) D

is ∗-isomorphic to the spatial tensor product of A and B? If one supposes that
A and B commute, then the tensor product really emerges. This is the content of
the classical Roos’ Theorem in quantum field theory.
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Theorem 4.1. (Roos, 1974) Assume that A and B commute. The following
conditions are equivalent:

(i) A and B are C∗-indepedent.
(ii) D is ∗-isomorphic to A ⊗β B for some C∗-norm β.

(iii) For each state � on A and for each state τ on B there is a unique state
ϕ on D such that ϕ(a b) = �(a) τ (b) for all a ∈ A, b ∈ B.

The proof of Roos’ Theorem uses in an essential way the fact that A and B

commute. In order to generalize this result to noncommuting algebras we have
introduced the following concepts. A state ϕ on D is said to be a product state
across A and B if ϕ(a b) = ϕ(a) ϕ(b) for all a ∈ A and b ∈ B. A state ϕ is said to
be an uncoupled product state across A and B if

ϕ(a1 b1 a2 b2 · · · an bn) = ϕ(a1 a2 · · · an) · ϕ(b1 b2 · · · bn)

for all a1, . . . , an ∈ A, b1, . . . , bn ∈ B. Every uncoupled product state is a product
state; the reverse implication is not valid. If A and B commute, then both concepts
coincide. We say that D has the C∗-uncoupled product property across A and B

if for every pair of states � ∈ S(A) and τ ∈ S(B) there is an uncoupled product
state ϕ on D extending both � and τ . The following result gives Roos’ Theorem
if A and B commute.

Theorem 4.2. (Bunce and Hamhalter, 2004) The following conditions are equiv-
alent:

(i) D has the C∗-uncoupled product property across A and B.
(ii) There exists a unique C∗-norm β on A ⊗alg B and a ∗-isomorphism of

A ⊗β B onto D/J (A,B), sending canonically a ⊗ b to a b + J (A,B)
(a ∈ A, b ∈ B), where J (A,B) is the two-sided closed ideal generated
by the set of all commutators {a b − b a | a ∈ A, b ∈ B}.

If D is a simple algebra, then J (A,B) has to be zero and so A and B commute.
Another contribution to the commutation problem is the following theorem:

Theorem 4.3. (Bunce and Hamhalter, 2004) D is canonically ∗-isomorphic to
the minimal tensor product A ⊗min B if and only if there is a set S of uncoupled
product states across A and B such that the set of the corresponding G.N.S. repre-
sentations {πϕ | ϕ ∈ S} is faithful on D. (We say that a system of representations
is faithful if the intersection of their kernels is zero.)

One of the main results of our analysis is the following corollary:
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Corollary 4.4. (Bunce and Hamhalter, 2004) If D is simple and there is at least
one uncoupled product state across A and B, then D is canonically ∗-isomorphic
to A ⊗min B.

Now we shall deal with the uniqueness of common state extensions. It turns
out, surprisingly, that the set of all uncoupled product states is the only reasonable
set in which unique extensions of states can be realized.

Theorem 4.5. (Bunce and Hamhalter, 2004) Let � be a weak∗ closed subset of
S(D) satisfying the following conditions:

(i) For each � ∈ S(A) and for each τ ∈ S(B) there is a unique state ϕ ∈ �

extending both � and τ .
(ii) For each � ∈ S(A) and each τ ∈ S(B), the sets {ϕ ∈ � | ϕ|A = �} and

{ϕ ∈ � | ϕ|B = τ } are convex.

Then � is the set of all uncoupled product states across A and B.

The previous theorem says that under mild convexity conditions the set of
unique extensions is nothing but the set of uncoupled product states. Uniqueness
of states implies strong algebraic properties. One example of the set � satisfying
assumptions of Theorem 4.5 is the set S�(D) of all “partial product” states ϕ on D

such that ϕ(ab) = ϕ(a) ϕ(b) whenever a ∈ Asa, b ∈ Bsa and ab = ba. These states
act as product probability measures on the probability spaces given by abelian
subalgebras generated by simultaneously measurable observables a ∈ A and b ∈
B. Combining our previous results we obtain the following characterizations of
the minimal tensor products.

Theorem 4.6. (Bunce and Hamhalter, 2004) Suppose that for each pair of states
� and τ of A and B, respectively, there is a unique state ϕ ∈ S�(D) extending
� and τ . Let D have a faithful family of G.N.S. representations associated with
S�(D). Then D is canonically ∗-isomorphic to A ⊗min B.

Corollary 4.7. (Bunce and Hamhalter, 2004) Let D be simple. Then D is canon-
ically ∗-isomorphic to the minimal tensor product A ⊗min B if and only if for each
pair of states � and τ of A and B, respectively, there is a unique state in S�(D)
extending � and τ .

We believe that the stated results contribute to the simplification of the
axioms on composite systems. Let us remark that one of the consequences
of these axioms is quantum entanglement. This crucial quantum phenomenon
is now frequently used in quantum information theory (Nielsen and Chuang,
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2000). In case of simple algebras one is necessarily led to accepting the mini-
mal tensor product if the following natural requirement is satisfied: Every pair
of states on local algebras has a unique product extension. Such a lucid char-
acterization of the simple spatial product is not apparent from the original
definition.
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Döring, A. (2004). Kochen–Specker Theorem for von Neumann algebras. arXiv:quant-ph/048106v1,

16 Aug 2004.
Florig, M. and Summers, S. J. (1997). On the statistical independence of algebras of observables.

Journal of Mathematical Physics 38, 1318–1328.
Gleason, A. M. (1957). Measures on the closed subspaces of a Hilbert space. Journal of Mathematics

and Mechanics 6, 885–893.
Gudder, S. P. (1979). Stochastic Methods in Quantum Mechanics, Elsevier, Amsterdam.
Haag, R. and Kastler, D. (1964). An algebraic approach to quantum field theory. Journal of Mathe-

matical Physics 5(7), 848–861.
Hamhalter, J. (1993). Pure Jauch–Piron states on von Neumann algebras. Annales de l’Institut Henri
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